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Many sports include a phase where teams or 

athletes take turns performing a task and the 

winner is the one who has the most successes. 

Examples include penalty shots where a soccer 

game results in a tie and a winner has to be 

declared, playoff series in various sports where a 

"turn" is a home game, as well as the manner of 

playing an overtime period in a tied American 

football game. The sequence in which the 

attempts are played in many of these tie-breakers 

has a real or perceived effect on the outcome.  



A common way to determine the order or 

sequence in such situations is by coin-toss. 

However, while that constitutes ex-ante fairness, 

it does not generate ex-post fairness, and it is 

considered rather undesirable to allow a coin-

toss to significantly affect the outcome of a 

match (Brams and Sanderson 2013). 



In tied soccer games that require a clear winner, 

teams typically take turns shooting a total of 5 

penalty shots each from a distance of 11m: 

ABABABABAB. Similar tie breakers are now 

used in the NHL in every tied game. Many fans 

and sports reporters believe team A to have a 

"psychological advantage" in this shoot-out and 

there is some empirical research supporting that. 

Other empirical research, however, refutes those 

findings.  



We consider an idea of bidding for the place in 

the sequence by the difficulty of the task. In 

soccer, assuming for simplicity that each team is 

allowed only one attempt (kick), the bid could be 

for the distance of its kicking point from the 

goal. If A bids 12.5m and B 11.5m then A would 

kick first, from a distance of some average of 

12.5m and 11.5m, while B would kick second 

from either 11m ("Rule 1") or from an average of 

11.5m and 12.5m ("Rule 2").  

 



That is an auction with positive externality, since 

the team with losing bid is still influenced 

(positively) by the magnitude of the winning bid. 

 

We analyze the resulting games for both rules, 

for discrete and continuous ability distributions. 

We then compare the bids resulting from each 

rule. 



Suppose the teams are evenly matched, risk neutral and 

characterized by their abilities to score on a penalty kick, 

denoted by x for A and y for B, 𝑥, 𝑦 ∈ [0,∞). Each team 

knows its own ability and forms a probability distribution 

function, 𝐹(∙), over the other team’s ability. Assume that if 

both attempts were from 11m, the following success 

probabilities for a team with ability 𝑦 are known to be:  

𝑝(𝑦) – the probability that the first attempt is successful; 

𝑞(𝑦) – the probability that the second attempt is successful 

if the first attempt by the other team was successful;  

𝑟(𝑦) – the probability that the second attempt is successful 

if the first attempt by the other team failed. 

One would expect that                        

𝑝 𝑦 > 𝑟 𝑦 > 𝑞 𝑦   ∀𝑦.  



The probabilities decrease with the kick distance. 

If a team with ability y attempts from a distance 

(11+z)m, then we assume that the probability of 

success is 𝑝 𝑦 𝑒−𝜃𝑧, where 𝜃 > 0 is given. The 

other probabilities, 𝑞(𝑦)  and 𝑟(𝑦) , change 

similarly. 

 



Suppose the teams follow a symmetric strategy 

that determines the bid a team submits given its 

ability, 𝛽(𝑦) , 𝛽: 0,∞ → [0,∞) . We seek a 

monotone increasing strategy 𝛽(𝑦) , which 

maximizes the expected probability that 𝐴 wins. 

Note that we focus on an outright win – a tie is 

given no value. 



We denote the bids of teams A and B by 𝑎 and 𝑏, 

respectively, and assume that if 𝑎 > 𝑏, then team 

A attempts first from a distance of 

𝛼𝑎 + 1 − 𝛼 𝑏, 
1

2
≤ 𝛼 ≤ 1, where 𝛼 is fixed by 

the organizers and known to the teams. As far as 

the team with a lower bid is concerned, Rule 1 

has it attempting a shot from 11m (i.e., zero extra 

distance), while Rule 2 requires it to attempt its 

shot from a distance of 𝛼𝑏 + 1 − 𝛼 𝑎, with the 

same 𝛼 as used for the team attempting first. If 

𝑎 < 𝑏 the roles of the teams are reversed. 

 



Rule 1 

The objective of team A is to maximize its 

expected probability of winning,  

 

max
𝛽 ∙

 𝐽

=  𝑝 𝑥 𝑒−𝜃 𝛼𝛽 𝑥 + 1−𝛼 𝛽 𝑦 1 − 𝑞 𝑦 𝑓 𝑦 𝑑𝑦
𝑥

0
  

+ 1 − 𝑝 𝑦 𝑒−𝜃 𝛼𝛽(𝑦)+ 1−𝛼 𝛽(𝑥) 𝑟(𝑥)𝑓 𝑦 𝑑𝑦

∞

𝑥

 



Two values distribution of abilities: 

Suppose that  

 𝑋, 𝑌 =  
𝑐    with probability        𝜀
𝑑    with probability 1 − 𝜀

           0 ≤ 𝜀 ≤ 1,  

and without loss of generality 𝑐 > 𝑑. 

Suppose that in case of ties the winner is selected 

randomly. 



Suppose first that 𝑥 = 𝑐, i.e., 𝛽 𝑐 = 𝑎, then, 

𝐽 =
𝜀

2
𝑝 𝑐 𝑒−𝜃𝑎 1 − 𝑞 𝑐 +

𝜀

2
𝑟 𝑐 1 − 𝑝 𝑐 𝑒−𝜃𝑎  

+(1 − 𝜀)𝑝 𝑐 𝑒−𝜃(𝛼𝑎+ 1−𝛼 𝛽(𝑑)) 1 − 𝑞 𝑑                                                      

Since 𝐽 decreases in 𝛽(𝑑) for each 𝑎, then the value of 𝛽(𝑑) that 

maximizes 𝐽  is 𝛽(𝑑) = 0 . After substituting  𝛽(𝑑) = 0 the 

maximization of 𝐽  

𝐽 =
𝜀

2
𝑝 𝑐 𝑒−𝜃𝑎 1 − 𝑞 𝑐 +

𝜀

2
𝑟 𝑐 1 − 𝑝 𝑐 𝑒−𝜃𝑎  

+(1 − 𝜀)𝑝 𝑐 𝑒−𝜃𝛼𝑎 1 − 𝑞 𝑑   

w.r.t. parameter 𝑎, is carried out by solving the equation  
𝑑

𝑑𝑎
𝐽 = 0 . 

The result is, 
𝑎

=  

1

𝜃(1 − 𝛼)
𝑙𝑛

𝜀 𝑞 𝑐 + 𝑟 𝑐 − 1

2𝛼 1 − 𝜀 1 − 𝑞 𝑑
,    𝑖𝑓    𝑞 𝑐 + 𝑟 𝑐 > 1 +

2𝛼(1 − 𝜀) 1 − 𝑞 𝑑

𝜀

0,                                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 



Suppose now that 𝑥 = 𝑑, i.e., 𝛽 𝑑 = 𝑎, then, 

𝐽 =
1 − 𝜀

2
𝑝 𝑑 𝑒−𝜃𝑎 1 − 𝑞 𝑑

1 − 𝜀

2
𝑟 𝑑  1

− 𝑝 𝑑 𝑒−𝜃𝑎  

+𝜀 1 − 𝑝 𝑐 𝑒−𝜃 𝛼𝛽(𝑐)+ 1−𝛼 𝑎 𝑟(𝑑). 

 

Since 𝐽 increases in 𝛽(𝑐) for each 𝑎, then the value of 

𝛽(𝑐)  that maximizes 𝐽 is 𝛽(𝑐) = ∞ . Substituting, the bid 

𝑎 that maximizes the objective 𝐽, 

𝐽 =
1−𝜀

2
𝑝 𝑑 𝑒−𝜃𝑎 1 − 𝑞 𝑑 − 𝑟(𝑑) +

1+𝜀

2
𝑟 𝑑 , 

is 

𝑎 =  
∞,    𝑖𝑓    𝑞 𝑑 + 𝑟 𝑑 > 1  
0,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 



Continuous exponential distribution of abilities: 

Suppose that the beliefs of the teams with regard to the 
abilities of the other team are distributed exponentially, 
𝑋, 𝑌~𝐸𝑥𝑝(𝜆) and the probabilities  𝑝 𝑦 , 𝑞 𝑦  and 𝑟 𝑦  
grow with the team ability in the form, 

𝑝 𝑦 = 1 − 𝑒−𝑝𝑦 ,  𝑞 𝑦 = 1 − 𝑒−𝑞𝑦,   𝑟 𝑦 = 1 − 𝑒−𝑟𝑦,    𝑝 > 𝑟 > 𝑞.  

This section limits the solution of the problem to the linear 
𝛽 ∙ , 

𝛽 𝑦 = 𝑡𝑦 

which is simple to implement. In such a case, 

𝐽 = 𝜆𝑒−𝜆𝑥

𝑒−(𝑞+𝑡𝜃)𝑥(1 − 𝑒−𝑝𝑥)(𝑒(𝜆+𝑞+𝑡(1−𝛼)𝜃)𝑥 − 1)

𝜆 + 𝑞 + 𝑡(1 − 𝛼)𝜃
−
𝑒−𝑡𝜃𝑥 1 − 𝑒−𝑟𝑥

𝜆 + 𝑡𝛼𝜃

+
1 − 𝑒−𝑟𝑥

𝜆
+
𝑒−(𝑝+𝑡𝜃)𝑥(1 − 𝑒−𝑟𝑥)

𝜆 + 𝑝 + 𝑡𝛼𝜃

 



In the numerical experiment below, we use 
𝜃 = 0.1 , 𝑝 = 0.1 , 𝑟 = 0.09 , 𝑞 = 0.08  and 
𝑥 = 17, which imply that the probabilities of 
success from 11m are 𝑝 𝑥 ≈ 0.82 , 𝑟 𝑥
≈ 0.78, and 𝑞 𝑥 ≈ 0.74. Also, take  𝛼 = 0.5 . 
The results of this case are presented in the 
following figures. We observe that team’s bid 
increases with the expected ability of the other 
team. However, the dependence of a team’s bid 
on its own ability differs whether Rule 1 or Rule 
2 is applied: the bid decreases for Rule 1 and 
increases for Rule 2. 

 



Figure 1 Figure 2 



Rule 2 

This rule requires both teams to shoot from a 

distance which is a linear combination of the two 

bids. The expected probability of A winning is now, 
 

max
𝛽 ∙

 𝐽

=  𝑝 𝑥 𝑒−𝜃 𝛼𝛽 𝑥 + 1−𝛼 𝛽 𝑦 1 − 𝑞 𝑦 𝑒−𝜃 𝛼𝛽 𝑦 + 1−𝛼 𝛽 𝑥 𝑓 𝑦 𝑑𝑦
𝑥

0
  

+ 1 − 𝑝 𝑦 𝑒−𝜃 𝛼𝛽(𝑦)+ 1−𝛼 𝛽(𝑥) 𝑟(𝑥)𝑒−𝜃 𝛼𝛽(𝑥)+ 1−𝛼 𝛽(𝑦) 𝑓 𝑦 𝑑𝑦
∞

𝑥
 . 



Two values distribution of abilities: 

Suppose that 𝑥 = 𝑐, i.e., 𝛽 𝑐 = 𝑎. Then, 
 

𝐽 =
𝜀

2
𝑝 𝑐 𝑒−𝜃𝑎 1 − 𝑞 𝑐 𝑒−𝜃𝑎 +

𝜀

2
𝑟 𝑐 𝑒−𝜃𝑎 1 − 𝑝 𝑐 𝑒−𝜃𝑎  

+(1 − 𝜀)𝑝 𝑐 𝑒−𝜃(𝛼𝑎+ 1−𝛼 𝑏) 1 − 𝑞 𝑑 𝑒−𝜃(𝛼𝑏+ 1−𝛼 𝑎) . 

By solving 
𝑑

𝑑𝑏
𝐽 = 0 w.r.t. 𝑏, we get that 𝑏 depends 

linearly on 𝑎, 

𝑏∗ 𝑎 =
1

𝛼𝜃
𝑙𝑛

𝑞(𝑑)

1−𝛼
− 𝑎

1−𝛼

𝛼
. 

 



Substituting, we obtain 
 

𝐽 =
𝜀

2
𝑝 𝑐 𝑒−𝜃𝑎 1 − 𝑞 𝑐 𝑒−𝜃𝑎 +

𝜀

2
𝑟 𝑐 𝑒−𝜃𝑎 1 − 𝑝 𝑐 𝑒−𝜃𝑎  

+(1 − 𝜀)𝛼𝑝 𝑐
1−𝛼

𝑞(𝑑)

1−𝛼

𝛼
𝑒−𝜃𝑎

2𝛼−1

𝛼 . 

 

After changing variable, 𝑧 ≡ 𝑒−𝜃𝑎, 

𝐽 = 𝑐1𝑧 − 𝑐2𝑧
2 + 𝑐3𝑧

2𝛼−1

𝛼 ,  

where 

 𝑐1 =
𝜀

2
(𝑝 𝑐 + 𝑟 𝑐 ),  𝑐2 =

𝜀

2
𝑝 𝑐 (𝑞 𝑐 + 𝑟 𝑐 )  

and 𝑐3 = (1 − 𝜀)𝛼𝑝 𝑐
1−𝛼

𝑞(𝑑)

1−𝛼

𝛼
. 



In the particular case 𝛼 = 1/2, 𝐽 is maximized at  𝑧 =
𝑐1

2𝑐2
. 

That is, 
 

𝑎 =  
1

𝜃
𝑙𝑛

2𝑝 𝑐 𝑞 𝑐 +𝑟 𝑐

𝑝 𝑐 +𝑟 𝑐
,   𝑖𝑓  𝑞 𝑐 + 𝑟 𝑐 >

1

2
1 +

𝑟 𝑐

𝑝(𝑐)
  

0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                               
. 

 

In the particular case 𝛼 = 1 , 𝐽  is maximized at 

𝑧 =
𝑐1+(1−𝜀)𝑝 𝑐

2𝑐2
. That is, 

 

𝑎

=  
1

𝜃
𝑙𝑛

2𝜀𝑝 𝑐 𝑞 𝑐 +𝑟 𝑐

2𝑝 𝑐 −𝜀(𝑝 𝑐 −𝑟 𝑐 )
,   𝑖𝑓  𝑞 𝑐 + 𝑟 𝑐 >

1

𝜀
−

1

2
1 −

𝑟 𝑐

𝑝(𝑐)
  

0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                               
. 



Suppose now that 𝑥 = 𝑑, i.e., 𝛽 𝑑 = 𝑎. Then, 

𝐽 =
1 − 𝜀

2
𝑝 𝑑 𝑒−𝜃𝑎 1 − 𝑞 𝑑 𝑒−𝜃𝑎 +

1 − 𝜀

2
𝑟 𝑑 𝑒−𝜃𝑎 1 − 𝑝 𝑑 𝑒−𝜃𝑎  

+𝜀(1 − 𝑝 𝑐 𝑒−𝜃 𝛼𝑏+ 1−𝛼 𝑎 )𝑞 𝑑 𝑒−𝜃(𝛼𝑎+ 1−𝛼 𝑏).  

By solving 
𝑑

𝑑𝑏
𝐽 = 0, we get that 𝑏 again depends linearly on 𝑎, 

𝑏∗ 𝑎 =
1

𝛼𝜃
𝑙𝑛

𝑝(𝑐)

1−𝛼
− 𝑎

1−𝛼

𝛼
. 

Substituting, we obtain 

𝐽 =
1 − 𝜀

2
𝑝 𝑑 𝑒−𝜃𝑎 1 − 𝑞 𝑑 𝑒−𝜃𝑎 +

1 − 𝜀

2
𝑟 𝑑 𝑒−𝜃𝑎 1 − 𝑝 𝑑 𝑒−𝜃𝑎  

+𝜀𝛼𝑞 𝑑
1−𝛼

𝑝(𝑐)

1−𝛼

𝛼
𝑒−𝜃𝑎

2𝛼−1

𝛼 . 

After changing variable, 𝑧 ≡ 𝑒−𝜃𝑎, 

𝐽 = 𝑐1𝑧 − 𝑐2𝑧
2 + 𝑐3𝑧

2𝛼−1

𝛼 , 

where 𝑐1 =
1−𝜀

2
(𝑝 𝑑 + 𝑟 𝑑 ),   𝑐2 =

1−𝜀

2
𝑝 𝑑 (𝑞 𝑑 + 𝑟 𝑑 ) and 

𝑐3 = 𝜀𝛼𝑟 𝑑
1−𝛼

𝑝(𝑐)

1−𝛼

𝛼 . 



In the particular case 𝛼 = 1/2, 𝐽 is maximized at  

𝑧 =
𝑐1

2𝑐2
. That is, 

𝑎 =  
1

𝜃
𝑙𝑛
2𝑝 𝑑 𝑞 𝑑 + 𝑟 𝑑

𝑝 𝑑 + 𝑟 𝑑
,     𝑖𝑓  𝑞 𝑑 + 𝑟 𝑑 >

1

2
(1 +

𝑟 𝑑

𝑝 𝑑
)  

0,                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                               

 

In the particular case 𝛼 = 1, 𝐽 is maximized at  

𝑧 =
𝑐1+𝜀𝑟 𝑑

2𝑐2
. That is, 

𝑎 =  
1

𝜃
𝑙𝑛

2(1−𝜀)𝑝 𝑑 𝑞 𝑑 +𝑟 𝑑

2𝜀𝑟 𝑑 +(1−𝜀)(𝑝 𝑑 +𝑟 𝑑 )
,   𝑖𝑓  𝑞 𝑑 + 𝑟 𝑑 >

1

2
(1 +

𝑟 𝑑

𝑝 𝑑

1+𝜀

1−𝜀
)  

0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                               
. 



The following table compares the bids corresponding to  

the two rules. 

   𝛼 = 1/2 𝛼 = 1 

𝑥 = 𝑐 
𝑎1
∗ > 𝑎2

∗   if 𝑞 𝑐 + 𝑟 𝑐 > 1 +
𝑇+ 𝑇2+4𝑇𝑆

2𝑆
, 

where 𝑆 =
𝜀

(1−𝜀)(1−𝑞 𝑑 )

2
 and  𝑇 =

2𝑝(𝑐)

𝑝 𝑐 +𝑟(𝑐)
 

𝑎1
∗ < 𝑎2

∗ ,   if     
1

2
1 +

𝑟 𝑐

𝑝 𝑐
< 𝑞 𝑐 + 𝑟 𝑐 < 

                                                  1 +
𝑇+ 𝑇2+4𝑇𝑆

2𝑆
  

𝑎1
∗ = 𝑎2

∗ = 0 if 

0 < 𝑞 𝑐 + 𝑟 𝑐 <
1

2
1 +

𝑟 𝑐

𝑝 𝑐
 

𝑎1
∗ > 𝑎2

∗   if 𝑞 𝑐 + 𝑟 𝑐 > 1 +
2(1−𝜀)(1−𝑞 𝑑 )

𝜀
,  

𝑎1
∗ < 𝑎2

∗ ,   if     
1

2
1 +

𝑟 𝑐

𝑝 𝑐
< 𝑞 𝑐 + 𝑟 𝑐 < 

                                                  1 +
2(1−𝜀)(1−𝑞 𝑑 )

𝜀
  

𝑎1
∗ = 𝑎2

∗ = 0, if 

0 < 𝑞 𝑐 + 𝑟 𝑐 <
1

2
1 +

𝑟 𝑐

𝑝 𝑐
 

𝑥 = 𝑑 𝑎1
∗ > 𝑎2

∗ ,   if 𝑞 𝑑 + 𝑟 𝑑 > 1 

𝑎1
∗ < 𝑎2

∗ ,   if  
1

2
1 +

𝑟(𝑑)

𝑝(𝑑)
 < 𝑞 𝑑 + 𝑟 𝑑 < 1  

𝑎1
∗ = 𝑎2

∗ = 0, if  

0 < 𝑞 𝑑 + 𝑟 𝑑 <
1

2
1 +

𝑟 𝑑

𝑝 𝑑
 

𝑎1
∗ > 𝑎2

∗ ,   if 𝑞 𝑑 + 𝑟 𝑑 > 1 

𝑎1
∗ < 𝑎2

∗ , if 𝑚𝑖𝑛 1,
1

2
1 +

𝑟(𝑑)

𝑝(𝑑)

1+𝜀

1−𝜀
< 

                                               𝑞 𝑑 + 𝑟 𝑑 < 1  

𝑎1
∗ = 𝑎2

∗ = 0,   otherwise 



Exponential distribution of abilities: 
 

𝐽 = 𝜆𝑒−𝑎𝜃𝑥
1 − 𝑒−𝑟𝑥 −

ⅇ− 𝜆+𝑡𝜃 𝑥

𝜆+𝑡𝜃
+

ⅇ− 𝜆+𝑝+𝑡𝜃 𝑥

𝜆+𝑝+𝑡𝜃
+

ⅇ−𝜆𝑥

𝜆+𝑡 1−𝛼 𝜃

+(1 − 𝑒−𝑝𝑥)
1−ⅇ−(𝜆+𝑞+𝑡𝜃)𝑥

𝜆+𝑞+𝑡𝜃
+

ⅇ𝑡(1−𝛼)𝜃𝑥−ⅇ−𝜆𝑥

𝜆+𝑡(1−𝛼)𝜃
−

1−ⅇ−(𝜆+𝑡𝜃)𝑥

𝜆+𝑡𝜃

  

 

We maximize 𝐽 numerically for the parameters used 
for Rule 1 and plot the results in the following 
figure. 





Presumably, teams who have a player (players) 

who is good in free kicks from, say, 16-25m will 

bid higher than ones who have no player with 

such talent. If Rule 2 is used, that is likely to 

require the team which lost the bid to kick from a 

distance from which they are not very good, 

introducing another positive externality. 



In American football, if a game goes into an 

overtime period (“sudden death”, 15 minutes or 

indefinite), the issue is which team should kick 

off first and where from (the other team would 

then start on offence). Bidding for that is a 

seemingly attractive option (Granot and 

Gerchak, 2014). 


